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Two-Sided Lack of Commitment

This section presents a version of Kocherlakota (1996), following LS approach to 2 risk averse
households.

1 Reursive Formulation

The Pareto frontier problem can be rewritten in a recursive way as

(P) =Q(A,s) = max {U(l — o) —u(l—y(s)) + 8 m(s)QA(s), 8')}

G A(3) -

st ule) —uly(s) + 5 Y 7AW > A W PK
A(s") >0, Vs [Br(s)A(s)] PART A
Q(A(s"),s") >0, Vs [B7(s")0(s")] PART B
ce0,1]

Thomas-Worrall show that A(s) € [0, A(s)],‘v’si (A, s) is decreasing and strictly concave
in A; and continuously differentiable in [0, A(s)].




The bounds A(s) are such that )
Q(A(s),5) =0

Note that since Q is strictly decreasing, for any A(s) > A(s),
Q(A(s),s) <0

Thus, for every s', the upper bound of A(s) covers all feasible allocations.

2 Characterizing Optimal Contract

Concavity of @) implies that the problem (P) is convex. Taking the FOCs:

[c] : —u/(1 —¢)+pu'(c) = 0
[A(s")] : Br(s)Q'(A(S), 8') + ppm(s)
FBr(OAS) + Ar()B(Q A, 8) = 0

Envelope condition:

Q(As) = —p
Substituting in the FOCs, we get
u'(1—c)
"(A = ——
Q ( ) 8) U/<C)

Q(As) = (1+0(s)Q(A(S), ') + Als)

Strict concavity of () implies that consumption is increasing in the promised value Agy. Given
that )’ is continuous, ¢ is a continuous function of Ag.

Given that c is increasing in Ay and Aq € [0, A(s)], define

(1 —c(s)

GO = )
ALY o\ — _ul(l _E(S))
Q(A(S),S) _ u’(é(s))

So
(A, s) € [c(s),e(s)]

Claim 2.1. There exists a unique c(s) such that

(0a) 0= c(s)
GO =)



Proof. Not that since @ is strictly decreasing, @'(0,s) < 0. Since u satisfies the Inada
conditions,

li =
0
w1 —c(s))
BT )
Also note that the ratio —“;E,l (E(QS()S))) is strictly decreasing. This gives us the result. O
Let g be such that
u'(1—q)
9(q) = Tl

where ¢ is decreasing. Note that

1. A(s') =6(s') = 0. Then

Q,<A’S) = Q/(A(S,),S,)
u'(1—c) uw'(1—c(s))

wie) u'(c(s))

which implies that c(s) is independent of s. For short hand, ¢(s') really means
c(A(s'),s"). Moreover, ¢(s') = ¢, Vs.

2. A(s') > 0 and 0(s') = 0. Then

which implies

dent of s ="amnesia”.

3. A(¢') =0 and 6(s’') > 0. Then

and again, 0(s) > 0 = Q(A(s),s) =0 = A(s) = A(s) = ¢(s) = ¢(s). We continue

having amnesia, where the solution tomorrow is indepedent of sg.
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4. A(s) > 0 and 6(s) > 0. Then

which implies that A(s) =0
Proposition 2.2. The optimal contract has the following form

¢ ifeelds) c(s)]
c(s) ife<c(s) PART A binds
c(s) ife>e(s) PART B binds

Proposition 2.3. Suppose y(s1) > y(sa), then ¢(s1) > ¢(s2) and c(s1) > c(s2)

Proof. Consider

Q (A +u(y(s2)) — u(y(s1)), 51) = max {U(l —c)—u(l—y(s1)) + 8 Z m(s)QA(S), S’)}

¢, A(s")
st ufc) —u(y(s) +5Z ) > A+ u(y(sz)) = uly(s1))
A(s') >0, Vs
Q(A(s"),s') >0, Vs
ce[0,1]

Thus, for any A,

Q (A +uly(s2)) —u(y(s1)),s1) = QA,s2) +u(l —y(s2)) —u(l —y(s1))
Q' (A +u(y(s2)) —u(y(s1)),s1) = Q(A, s2)



Q (Als2) +uly(s2)) —uy(s1),s1) = Q(A(s2),52) + u(l — y(s2)) — u(l —y(s1))

which implies that

Q" (A(s2) 4 u(y(s2)) —U(?{(Sl))»sl) > @ @(SD»SI)
Q/(A<S2)782) > Q/ (A<Sl>751)
9(€(s2)) > g(e(s1))
6(82) < E<81>
Similarly, one can show that c(s;) > c(s2). O

Proposition 2.4. y(s) € [¢(s), c(s)] and y(Smin) = c(Smin) and Y(Smaz) = ¢(Smaz)

Proof. We will only show half of the argument, and the other half is symmetric. First, we
want to show that y(s) < ¢(s). This comes through the observation

Q(A(s),s) = u(l —&(s)) —u(l —y(s)) + 8 Z T(s)Q(A(s), 8) (1)
-0 (2)

Since Q(A(s), s') > 0, this implies that u(1—¢(s)) —u(l—y(s)) < 0. Therefore, y(s) < &(s).

Next we want to show that y(S;mae) = ¢(Smaz). Note that in the previous previous proof, we
showed that if y(s1) > y(s2), then

Q'(A(s2), 52) > Q" (A(s1),51)
Thus, for all s" # saz,
Q'(A(s),8") > Q' (A(smaw): Smax)
This implies that
é(s") < c(Smaz)

As we showed before, this implies that the participation constraint will bind in states s’ #

Smaz for agent B. In ' = $,,4., we will have ¢(s/,,,.) = ¢(Smaz) = Cmaz, Since consumption is



within the bounds. This then implies that

S ()QAE), ) =0

S/

u(1 = Caz) — U(1 = Ypmaz) = 0

y(smax) = Crnaz

3 Risk Sharing

Proposition 3.1. Suppose that ¢(s1) = ¢(s1) = y(s1), then c(s) = é(s) = y(s), Vs.

Proof. This follows from a few observations. Suppose c(s1) = ¢(s1) = y(s1). In this case,
the only feasible realizations of A(s;) are 0, since this implies that A(s;) = 0. Given this
realization, we have the binding promise keeping constraint which implies

0 =u(y(s1)) —uly(s:)) + B Y 7(sNA(S)
Since A(s’) > 0, this implies A(s") =0V s'. Also observe
Q(A(s1),s1) = u(l — y(s1)) —u(l —y(s1)) + B 7(sHQ(A(s'), )

=0

Since Q(A(s'),s") > 0, this implies that Q(A(s"),s") = 0 for all s". Together with this first
observation, we have that A(s") =0 for all s'. O

Proposition 3.2. If ¢(y(Smin)) < c(Y(Smaz)), then no first-best efficient allocation is sus-
tainable.



